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A Simple Vision Model for Inhomogeneous Image Quality Assessment
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Abstract

The single filter model for image quality assessment previously presented at this meeting breaks down when
the image luminance or masking contrast energy varies spatially within the image. A slightly more complex
version of the single filter model is presented which allows for these inhomogeneities.

Introduction

A simplified vision model for image quality assessment was presented at the 1996 Meeting and elsewhere
since [1, 2, 3]. Examples were given demonstrating situations in which this model's performance exceed that
of more complex models with channels that represent the spatial frequency selectivity of the simple cells of
the visual cortex, but no masking beyond within-cell nonlinearity. The better performance was attributed to
the general masking term of the simple model. The general masking term accounts for cross-channel
masking that has been added to the cortex type models at the expense of even more computational
complexity.

The simplified model has two weaknesses that can be remedied without much trouble. One weakness is that
the conversion from luminance to contrast was done at a global level rather than a local level, as is known to
be appropriate [4]. This means that in the previous model, contrast in a light part of the image was
overestimated, while it was underestimated in dark parts of the image. The second weakness of the
simplified model is that the conversion from filtered contrast to masked filtered contrast was done globally,
rather than locally [5, 6]. Contrast energy in the target background affects perceived contrast over a large
region, but it only masks very locally. Here local luminance and contrast energy images are used in place of
the single numbers in the simplified model [1].

The Model Steps

The input to the model consists of two images. The output is a perceptual distance d', representing the
number of just-noticeable-differences between the images. Each of the following steps is applied to both
images.

Blur. The image I is convolved with a low pass Gaussian filter FB,

B[x,y] = I[x,y] * FB[x,y].

Local luminance. The blurred image B is convolved with a low pass Gaussian filter FL,

L[x,y] = B[x,y] * FL[x,y].

Local contrast. The contrast image is computed from the local luminance,

C[x,y] = B[x,y] / L[x,y] - 1.

Local contrast energy. Squared contrast image values are convolved with a Gaussian low pass filter FE,
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E[x,y] = C[x,y]2 * FE[x,y].

Local contrast gain adjustment. The masked visible contrast image is computed using a divisive inhibition
formula,

V[x,y] = C[x,y] / (1+gE E[x,y])0.5.

Summation of image differences. The distance between the masked visibility images is based on a
Minkowski metric with an exponent of 4, corresponding to probability summation over space,

d' = gC ( S x, y (V1[x,y] - V2[x,y])4)0.25.

Parameters. Parameters for the model were estimated by least squares fit to the target detection data for
several backgrounds in noise [7]. Table 1 shows the parameter estimates.

Table 1 - Model Parameter Estimates

blur spread, sB, 1.0 arc min
local luminance spread, sL, 9 arc min
local contrast spread, sE, 25 arc min

contrast energy gain, gE, 7
contrast sensitivity gain, gC, 10.5

Discussion

When the image is uniform in average luminance, one can simplify the model by dividing by that average
luminance value rather than the average local luminance image value. Similarly, if the average contrast
energy is constant one can further simplify by using that value. The previous simplified model used both
these simplifications, but it also was a linearized model with the property that the d' for a target added to the
background is proportional to the target amplitude. This convenient property was obtained by using the
luminance and contrast energy values from the background image alone. This could be done here for the
contrast energy, but if it is done for the luminance, the bandpass nature of contrast sensitivity is lost because
it depends on the local luminance.

In complex models with spatial frequency channels both the luminance normalization and the contrast
energy masking have been done after the spatial frequency analysis. Duvall-Destin [8] and Peli [9] have
proposed calculating contrast at each spatial scale separately, based on the DC value at the neighboring
larger scale. A similar result obtains from Zetzsche and Hauske's ratio of Gaussians model [10]. These
models ignore the large amount of local adaptation occurring in the retina before the spatial frequency
analysis of the cortex, but perhaps partly correct for the effects of eye movements on retinal adaptation,
which would tend to make the adaptation spread to the size of fixated objects.

Models that simulate cortical units now include the lateral interactions that provide scale dependent divisive
inhibition from neighboring units stimulated by contrast energy to which they are tuned. For Teo and Heeger
[11], the neighbors differed only in orientation. For Cannon [12] the neighborhood was extended in space,
but the extension was to explain the drop in perceived contrast, which has a much wider spread than actual
masking. In the Watson and Solomon model [6], masking is generated in units tuned to different positions,
spatial frequencies, and orientations, but the estimated spatial spread was very small.

Although luminance adaptation and contrast masking are local, the above arguments suggest that fixed
spreads cannot always work. Because luminance adaptation at the retinal level is a function of eye
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movements, and has possible contributions from scale variant processing, no fixed size of spread could
correctly predict all possible signal and background situations. The situation is similar for contrast masking.
The point of the present model is an engineering approximation, whose usefulness should diminish as more
complex models become developed to the point where they can make accurate predictions in complex
scenes.

When detectability is the main criterion, it may be better to devote computing resources to modeling
masking rather than filtering properties of the visual system. In general masking is greater, the more the
masker and the target have the same location in space and spatial frequency (including orientation). The
most complex models allow masking to vary appropriately in these dimensions. In applications where the
artifacts, targets, and/or masking images are not well localized in spatial frequency, the masking may be
predictable from this simplified model.
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